

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Accelerating
DevOps

Delivery Cycles

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Accelerating
DevOps

Delivery Cycles
BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Accelerating DevOps Delivery Cycles For Dummies®,
BMC Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of
the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States
and other countries, and may not be used without written permission. BMC and the BMC logo are
trademarks or registered trademarks of BMC Software, Inc. All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned
in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies book
for your business or organization, please contact our Business Development Department in the U.S. at
877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub. For information about
licensing the For Dummies brand for products or services, contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-56968-8 (pbk); ISBN 978-1-119-56967-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

We’re proud of this book and of the people who worked on it. Some of the
people who helped bring this book to market include the following:

Project Editor: Martin V. Minner

Editorial Manager: Rev Mengle

Executive Editor: Steve Hayes

Business Development
Representative: Molly Daugherty

Production Editor:
Tamilmani Varadharaj

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Contents at a Glance
Introduction ... 1
CHAPTER 1: Exploring DevOps 101 ... 5
CHAPTER 2: Jobs-as-Code in DevOps .. 13
CHAPTER 3: Application Workflow Orchestration in a CI/CD Pipeline19
CHAPTER 4: Application Workflow Orchestration in a Containerized World27
CHAPTER 5: Looking at Real-World Examples .. 31
CHAPTER 6: Ten Benefits of Application Workflow Orchestration

and Jobs-as-Code .. 37

Accelerating DevOps Delivery Cycles For Dummies

Table of Contents vii

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Foolish Assumptions .. 2
Icons Used in This Book ... 2
Beyond the Book .. 3
Where to Go from Here ... 3

CHAPTER 1: Exploring DevOps 101... 5
What Is DevOps? ... 5
What Is CI/CD? .. 6
What Is Application Workflow Orchestration? 9

CHAPTER 2: Jobs-as-Code in DevOps .. 13
Defining Jobs ... 13
Thinking of Jobs as More than Business Logic 14
Optimizing the Job Request Process .. 17

CHAPTER 3:	 Application	Workflow	Orchestration	
in a CI/CD Pipeline ... 19
Examining the CI/CD Pipeline ... 19
Adding Jobs-as-Code .. 24
Scaling Up Application Workflow Orchestration 25

CHAPTER 4:	 Application	Workflow	Orchestration	
in a Containerized World ... 27
Looking at the Container Pipeline .. 27
Developing Container Pipelines ... 28
Adding Application Workflow Orchestration 29

CHAPTER 5: Looking at Real-World Examples 31
Developing a Payment Processing Application 31

From support tickets to CI/CD ... 31
Adding Jobs-as-Code ... 32

Leveraging Big Data and DevOps to Fight Malware 33
Big data processing .. 33
Adding application workflow orchestration 33
Advanced integrations ... 34

viii Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A Leading Travel Technology Company Leverages
DevOps and the Cloud ... 34

Batch jobs at scale .. 34
DevOps and cloud ... 35

CHAPTER 6:	 Ten	Benefits	of	Application	Workflow	
Orchestration	and	Jobs-as-Code.................................... 37
Faster Software Delivery at Scale ... 37
Increased Software Quality ... 38
Automated Testing ... 38
Repeatable Processes .. 38
Better Communication .. 39
Increased Agility ... 39
Greater Visibility ... 39
CI/CD Integration .. 40
Containerization ... 40
Native Languages ... 40

Introduction 1

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

DevOps is all about improving collaboration so businesses
can speed application time-to-market without sacrificing
quality. However, application workflow orchestration is

often left out of the DevOps equation. Instead, developers use
 various basic tools to code jobs as they build apps.

What’s wrong with this approach? The absence of consistent dev
standards often leads to a failure to meet production standards.
When something breaks, it’s usually hard to find and fix.

Jobs-as-Code standardizes and automates job scheduling by
embedding operational instrumentation, written using code-
like notation like JavaScript Object Notation (JSON), YAML Ain’t
Markup Language (YAML), or Python, that uses an application
programming interface (API) to invoke the services of a work-
flow orchestration solution. That code is managed throughout the
continuous integration/continuous delivery (CI/CD) pipeline, the
same way all other code that implements the application business
logic is managed.

Application workflow orchestration determines when jobs run
and what to do if a job fails. If developers are spending too much
of their time defining this administrative functionality, they are
re-creating the wheel, only to create a future maintenance burden
for themselves and headaches for operations.

This book shows you how to apply a Jobs-as-Code approach to
workflow orchestration to save time, conserve resources, reduce
errors, and ensure consistency to accelerate DevOps in your
organization.

About This Book
Accelerating DevOps Delivery Cycles For Dummies, BMC Special
 Edition, consists of six chapters that explore

 » The basics of DevOps, including its evolution, workflow
orchestration, and Jobs-as-Code (Chapter 1)

2 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » What comprises the jobs in Jobs-as-Code, how the approach
works, and its benefits (Chapter 2)

 » The CI/CD pipeline and application workflow orchestration in
depth (Chapter 3)

 » Containers and workflow orchestration (Chapter 4)

 » Real-world use cases and success stories using workflow
orchestration and Jobs-as-Code (Chapter 5)

 » Ten key benefits of application workflow orchestration and
Jobs-as-Code in DevOps (Chapter 6)

Foolish Assumptions
It’s been said that most assumptions have outlived their useless-
ness, but we assume a few things nonetheless.

Mainly we assume that you are somewhat familiar with DevOps
practices and some of the challenges of DevOps. You may be
responsible for DevOps in your organization or looking to enhance
DevOps and CI/CD practices in your organization.

If any of these assumptions describe you, then this book is for
you! If none of these assumptions describe you, keep reading
anyway. It’s a great book and it’ll accelerate your knowledge of
DevOps.

Icons Used in This Book
Throughout this book, we occasionally use special icons to call
attention to important information. Here’s what to expect:

This icon points out information you should commit to your
 nonvolatile memory, your gray matter, or your noggin — along
with anniversaries and birthdays!

You won’t find a map of the human genome here, but if you seek
to attain the seventh level of NERD-vana, perk up! This icon
explains the jargon beneath the jargon.

Introduction 3

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Tips are appreciated, never expected — and we sure hope you’ll
appreciate these tips. This icon points out useful nuggets of
information.

Beyond the Book
There’s only so much we can cover in this book, so if you find
yourself at the end, thinking, “Where can I learn more?” just go
to www.bmc.com/control-m.

Where to Go from Here
If you don’t know where you’re going, any chapter will get you
there — but Chapter 1 might be a good place to start! However,
if you see a particular topic that piques your interest, feel free to
jump ahead to that chapter. Each chapter is written to stand on its
own, so you can read this book in any order that suits you (though
we don’t recommend upside down or backward).

http://www.bmc.com/control-m

CHAPTER 1 Exploring DevOps 101 5

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Getting started with DevOps

 » Introducing continuous integration (CI)
and continuous delivery (CD)

 » Enhancing DevOps with application
workflow orchestration

Exploring DevOps 101

In this chapter, you learn the basics of DevOps and how applica-
tion workflow orchestration helps accelerate your organiza-
tion’s DevOps journey by ensuring the applications you deliver

to production can run efficiently and meet business demands like
governance and service levels.

What Is DevOps?
DevOps is a set of practices dedicated to building, delivering, and
operating rapidly-evolving systems in close alignment with busi-
ness objectives. Some key practices are prolific communication
and collaboration among all participants in the software devel-
opment life cycle (SDLC). But DevOps isn’t about holding hands
and singing “Kumbaya.” DevOps focuses on creating an ongoing
feedback loop of analyzing, building, and testing while leverag-
ing automation to speed the entire software delivery process. To
achieve this kind of seamless and constant loop of software build-
ing and testing, you need to create cross-functional teams that
can work together effectively.

The key to DevOps functioning at optimal levels is engendering a
culture of communication in which teams can coordinate among
themselves and with other teams in an effortless manner.

6 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

An environment strongly committed to DevOps tends to pro-
duce applications that are modular and insulated by an appli-
cation programming interface (API) layer. Each component can
be developed, revised, and deployed on its own, and any issues
within an individual component have only a minor impact on the
entire software project. This approach allows new features and
releases to be implemented more easily and simplifies rollbacks
if necessary. Keeping each deliverable component to a smaller,
more manageable size helps to maintain the quality of work while
accelerating the speed at which changes can be made.

The SDLC is a process for producing software applications.
Although opinions vary about the number and specifics of each
step, this book focuses on the following phases:

 » Code: Includes code development and review, source code
management tools, and code merging.

 » Build: Includes continuous integration tools and build status.

 » Test: Consists of automated testing tools that help to
identify bugs and avoid unintended regression from
previous versions.

 » Deploy: Includes continuous delivery tools and deployment
status.

DevOps is neither a silver bullet that will make all your problems
go away nor a tool you can install and easily turn on like a light
switch. DevOps helps to optimize your IT organization’s process
for software development along each step of the SDLC.

What Is CI/CD?
In a world where every company is a software company, compet-
itive advantage comes through innovation in the improvements
and changes to software-enabled business services delivered to
end-users and customers. To increase the rate of innovation,
organizations must ensure that the business and technical chal-
lenges in releasing new or enhanced services are mitigated. Close
integration among the development, testing, and operations roles,
as well as key business decision makers, is critical to achieving

CHAPTER 1 Exploring DevOps 101 7

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

these goals. IT has traditionally been tasked with “keeping the
lights on,” but progressive organizations are driving unprece-
dented business opportunities by delivering the custom applica-
tion features, services, and innovations that their end-users and
customers demand. At the same time, these organizations rec-
ognize that traditional development and delivery methodologies
fail to deliver low-risk, software-enabled business services at a
rapid pace.

Continuous integration (CI) and continuous delivery (CD) are
software engineering practices aimed at developing and deliv-
ering software as quickly as possible, with the highest levels of
quality.

CI involves the process of merging all coding works of a soft-
ware development project on an ongoing basis. Typically, all code
changes are committed to a centralized version control reposi-
tory, such as Git. A process referred to as “build” is then initiated
by tooling, such as Jenkins, either automatically, as a result of
the commit action, or on some pre-defined basis (for example,
hourly or once a day). The build process collects all the application
components and ensures that requirements are satisfied and that
references are resolved for the construction of the application.
Some minimal testing may also be performed to ensure that the
build results in a functional product.

Today, CI relies on automation tools and is coupled with a culture
that drives rapid integration of iterative code development. If an
error is introduced or a failure is detected, the entire product team
pauses its normal work and focuses on identifying and correcting
the problem. This cultural component is an integral part of any CI
strategy — collaborating, communicating, and learning how to
perform and merge small code changes faster requires a cultural
shift at an individual and collective level within the organization.
CI strategies encourage small and frequent code commits that
can be integrated faster without breaking the resulting software
functionality. Build tools run automated tests on the merged code
to identify bugs early in the SDLC and ensure that application
changes are structurally correct.

As defined at https://continuousdelivery.com, CD is “the abil-
ity to get changes of all types — including new features, configu-
ration changes, bug fixes and experiments — into production, or

https://continuousdelivery.com

8 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

into the hands of users, safely and quickly in a sustainable way.”
As an application proceeds along the SDLC, practices that contrib-
ute to achieving this goal include:

 » Dynamic infrastructure that can support comprehensive and
realistic testing

 » Automated testing frameworks that can subject even a
minor change to extensive regression and acceptance
testing

 » Automated, rule-based customization of environment-
dependent properties

An automated CI/CD process helps to accelerate innovation
through a fast and efficient software release process. Secure
and functional software updates are ensured through automated
build and testing. Development, testing, and operations teams
work together to resolve issues that arise within the delivery
pipeline. IT shops are freed from manual tasks like solving com-
plex bug fixes and resolving code dependencies that appear late
in the software delivery process. Any code change that introduces
a bug is identified immediately, and developers can collaborate
to make changes accordingly. As a result, correct, functional,
secure and improved software updates are delivered to end-
users and customers faster. Organizations can quickly respond
to market changes, cybersecurity issues, or new business oppor-
tunities. Unlike traditional methodologies that focus on deliv-
ering software updates to end-users and customers in weeks
or months, automated CI/CD strategies aim to deliver working
updates in a matter of hours or days.

To achieve these goals, an effective CI/CD strategy should include
the following best practices:

 » Leverage version control. To ensure that every change to
the software build is recorded and tracked, a version control
system (VCS) should be used to track changes and provide
a quick method for reverting to earlier, stable versions. An
automated CI process can be achieved by triggering software
integration and testing processes as the VCS is updated with
a new code commit. Changes are documented accordingly
to maintain a single version of truth as the build progresses
through the development phase.

CHAPTER 1 Exploring DevOps 101 9

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Operate the infrastructure as code. An effective CI/CD
strategy requires comprehensive, highly iterative and
automated testing in an environment that mirrors the target
production environment as much as possible. Operating
infrastructure as code enables infrastructure to be created
easily, automatically, and consistently, and to then be
discarded as soon as it is no longer required. CI/CD is almost
impossible to achieve through any other management
approach.

 » Test constantly. Perform comprehensive tests after every
change, no matter how minor, to identify problems as early
as possible. Early problem identification significantly reduces
the time and effort required to apply fixes and directly
contributes to higher overall quality of the final product.

 » Keep it secure. Take necessary measures to ensure
optimum security of the CI/CD infrastructure, especially
because the pipeline contains valuable data and may have
access to production systems that are targets of deploy-
ment. Use advanced identity and access management (IAM)
capabilities such as multi-factor authentication (MFA), virtual
private networks (VPNs), and a layered approach to security,
depending upon the risk of exposure.

What Is Application Workflow
Orchestration?

So far, this chapter examines how modern applications are being
built. Next, consider the individual components — what makes
up an application:

 » Business logic: This is the major component that has the
“instructions” that implement an application. It may be
written in Java, Python, or another programming language.

 » Infrastructure: This includes the servers and networking on
which the application executes.

 » Configuration: This may include firewall rules, memory and
CPU requirements, and locations of databases.

10 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Operational logic: This includes dependencies and relation-
ships with other applications or files, restrictions (for example,
the application is required to only run together with another
application or only if the other application is not running) and
service-level commitments. This is referred to as application
workflow orchestration.

Not all applications require workflow orchestration. For example,
a web application that interacts with users and is expected to be
always operational may only require some monitoring to ensure
the application is healthy and available. Other applications, how-
ever, such as those in a data analytics pipeline, may require input
from outside sources or data extracted from other systems. Before
analytics are performed, it may be necessary to subject incom-
ing data to validation or cleansing after the required data compo-
nents have been assembled. After results have been computed, the
output may have to be pushed to another application. Such a
sequence of processing will likely require orchestration that con-
trols the various processes and invokes the correct ones when
their prerequisites have been satisfied.

An application workflow orchestration product should provide
comprehensive capabilities, including the following:

 » Arrangement: How processes and tasks relate to one
another within the business service they collectively deliver.

 » Coordination: How one application relates to other services
that may have some indirect relationships with one another.

 » Management: The monitoring required for successful
operation, such as ensuring that a predecessor process or
event has completed successfully before invoking the next
one in the sequence of steps, notifying when errors occur,
and ensuring that service levels demanded by business
requirements are attained.

 » Oversight: Ensuring proper authorization to perform
functions, accumulating audit information about who did
what and when, and collecting logs and output for both
governance and problem analysis.

Organizations embracing a DevOps approach to application
development and delivery should have the goal of manag-
ing all application components as code, not just business logic
or infrastructure. Application workflow orchestration, for those

CHAPTER 1 Exploring DevOps 101 11

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

applications that require it, is an equally critical set of application
artifacts and should be included in the CI/CD pipeline as code just
like all other application components. Because workflow orches-
tration may have been the responsibility of IT operations teams
in the past, it is particularly important to marshal organizational
commitment to support this shift in mindset for developers
and engineers to embrace workflow orchestration as code (also
referred to as Jobs-as-Code).

Developers and engineers may not consider workflow orchestra-
tion to be their responsibility. However, remember that DevOps
includes an “Ops” component. Well-designed and well-running
applications must include operational instrumentation and
 workflow orchestration to deliver effective and efficient operation
that meets the requirements of the business.

Another measure of DevOps maturity is whether or not an orga-
nization manages jobs “as-code.” Jobs-as-Code is an approach to
managing workflow orchestration within the SDLC just like any
other code component of an application. Source code, or business
logic, is managed with source code management (SCM) solutions.
Infrastructure-as-Code is stored in the same SCM and managed
with configuration management solutions. It’s a logical next step
in embracing DevOps to include workflow orchestration in your
SCM and manage that operational instrumentation as code. Doing
so brings all elements of software delivery into one single work-
flow, as illustrated in Figure 1-1.

FIGURE 1-1: A software delivery cycle with infrastructure, source, and jobs all
managed as code.

12 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Managing jobs as code means that developers can work on them
earlier in the life cycle. Developers can manage jobs as just
another code component of an application to be added to testing
and deployment. With the right application workflow orchestra-
tion product, developers can test jobs and workflows with their
testing frameworks, ensuring that deployment to production can
be done with confidence.

CHAPTER 2 Jobs-as-Code in DevOps 13

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Looking at the jobs in Jobs-as-Code

 » Seeing Jobs-as-Code in action

 » Exploring the benefits of Jobs-as-Code in
DevOps

Jobs-as-Code in DevOps

T
his chapter explores Jobs-as-Code: what it is and how it
helps accelerate DevOps.

Defining Jobs
Jobs-as-Code is a DevOps approach that treats application auto-
mation management in the software development life cycle
(SDLC) just like any other code components of an application.
More specifically, it’s a way of standardizing and automating
job scheduling by embedding code, using a simple notation that
makes application programming interface (API) calls to a sched-
uling engine. Calls are managed throughout the continuous deliv-
ery (CD) pipeline the same way Java or Python code is managed.
As such, Jobs-as-Code is fundamentally no different from other
code management practices.

To understand Jobs-as-Code, you need to know what a job is. Jobs
are sets of commands or programs that are executed, usually on a
schedule, or triggered by another activity, such as the completion

14 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

of a process. Jobs can be as simple or as complex as needed. Some
examples include:

 » Data pipelines: Data movement and processing through the
four main stages of any data pipeline: ingestion, storage,
processing, and analytics.

 » Extract, transform, load (ETL): Moving data to a data
warehouse by extracting and transforming it to the neces-
sary schemas for the warehouse.

 » Reconciliation: Accounting reconciliation at the close of
business for the day, or for another period, such as a month
or quarter.

 » Reporting: Executing reports that run periodically, such as
nightly or quarterly. Some reports place a burden on database
resources and are thus run overnight or during off-peak hours.

 » Billing: Processes involving the generation of a large number
of invoices or bills to send to clients.

When jobs are developed at the same time as the rest of the code,
they can be tested with the main codebase. If jobs are created late
in the process, changes to those jobs due to testing failures can
affect the delivery schedule. Sometimes testing failures found
late in the process can require extensive, costly modifications.
By testing earlier and incorporating jobs as part of the regular
testing process for software development, taking a Jobs-as-Code
approach delivers benefits throughout the SDLC.

Thinking of Jobs as More than
Business Logic

Jobs that manage the workflows of business applications are
simply instrumentation. Traditionally, developers have relied on
scripting to orchestrate their application workflows. Consider the
following example:

1. A data pipeline ingests data from systems of record like ERPs
or CRMs and from devices or social media streams.

2. The data is then stored in a data lake.

CHAPTER 2 Jobs-as-Code in DevOps 15

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

3. Based on different business group needs, the data is
processed.

4. Artificial intelligence and machine learning models are
applied to the refined data to provide insights to relevant
business groups.

Here is a snippet of a data pipeline workflow in code format.

"IOT_Pipeline": {
 "Type": "Folder",
 "Comment" : "Folder for RX2 to create EMR

cluster and run Predictive maintenance analysis
based on vehicle sensor data",

 "IOT_Create_Cluster": {"Type" :
"Job:Script",

 "Description" : "Launch EMR cluster
and deploy a Control-M agent",

 "FileName" : "launchEMR.bat",
 "FilePath" : "C:\\Prod_Stuff\\",
 "Host" : "controlm",
 "RunAs" : "Administrator"
 },

 "IOT_CPSetup": {"Type" : "Job:Script",
 "Description" : "Customize and deploy

connection profiles for dynamic EMR agent",
 "FileName" : "FY19_CPDeploy.sh",
 "FilePath" : "/home/BMC_Stuff",
 "Host" : "controlm",
 "RunAs" : "Administrator"
 },

"IOT_JAR_Setup": {
"Type" : "Job:FileTransfer",
"ConnectionProfileSrc" : "controlm",
"ConnectionProfileDest" : "EMRhostSFTP",
"Host" : "controlm",
"FileTransfers" :
 [
 {

16 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 "Src" : "C:\\BMC_Stuff\\
maintenance_data.csv",

 "Dest" : "/home/hadoop/
maintenance_data.csv",

 "TransferType": "Ascii",
 "TransferOption":

"SrcToDest"
 },
 {
 "Src" : "C:\\BMC_Stuff\\

lr-assembly-1.0.jar",
 "Dest" : "/home/hadoop/",
 "TransferOption":

"SrcToDest"
 }
]
 },

This entire flow will pass through multiple applications and
may run entirely in the cloud or in a hybrid-cloud/on-premises
 architecture. Developers may write the code for such a pipeline in
Python, Java, or some other language, and then use scripting lan-
guages to orchestrate and run the jobs in this workflow based on
an event trigger, a time-based schedule, or a combination of both.

Typically, operational scripting ends up taking more time (and
arguably more code) than the business logic itself. When an appli-
cation like this is delivered to operations to run in production, the
scripts are examined and strung together in a more robust orches-
tration system that gives operations visibility to the flow of jobs
for better error handling. They need precise alerting and notifica-
tion when there is a failure or delay so they can recover quickly.
There may be operational requirements to ensure completion of
the workflows within a given business service-level agreement
(SLA) as well. All this operational instrumentation usually hap-
pens at the end of the release cycle. This can be chaotic, and to
meet go-live deadlines, some operational shortcuts may have to
be taken. This is likely to create costly technical debt and ser-
vice failures in the future. An application workflow orchestration
solution can abstract this complexity.

CHAPTER 2 Jobs-as-Code in DevOps 17

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In the preceding example, business logic is the code that ultimately
performs the business function the application was intended to
deliver.

The application workflow orchestration solution used in produc-
tion should support a Jobs-as-Code approach and have the fol-
lowing operational capabilities:

 » Easily support sophisticated workflow relationships

 » Provide extensive application integration to support diverse
platforms and technologies

 » Enable operational insight into execution status and
progress

 » Display output and log collection

 » Support service-level management, business-level abstrac-
tion, and full security

 » Ensure audit and governance compliance

 » Provide comprehensive end-to-end support of a fully
automated release/delivery pipeline

For an application to deliver the greatest return on investment
(ROI), the development process must be as streamlined and
 efficient as possible. The application should run in production
with the fewest possible issues ensuring a positive customer
experience. Taking a Jobs-as-Code approach is a key element in
achieving both of these goals.

Optimizing the Job Request Process
Traditionally, developers aren’t given access to the system used
to orchestrate jobs in production. When they need to request a
new workflow (or make changes to an existing job), they usu-
ally have to submit a ticket in the service desk system detailing
the changes needed. This process often creates friction and delays
in getting changes to production. For example, operations may
send the request back to the developers directing them to modify
the request to adhere to operational standards such as production
naming conventions.

18 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In an implementation where a Jobs-as-Code approach was adopted
and has been used for a good length of time, developers can
define jobs as code and have access to customizable templates
that define the production standards. They can then store these
jobs in a source code management system and CI/CD toolchain to
build and deploy the job flow in the same manner as the rest of
the application code.

A key concept in DevOps is to ensure that development and
 operations teams work together through the entire life cycle of the
product. Everything required for an application to be production-
ready should be baked into the SDLC. Terms like DevSecOps, which
simply means security should be considered early in the develop-
ment life cycle instead of at the end, are starting to be used as a
result of this concept. The same applies to the orchestration and
operational readiness of the jobs that will orchestrate the work-
flow. Jobs-as-Code is modeled after a prominent concept called
Infrastructure-as-Code. The focus of Infrastructure-as-Code is
defining, running, and managing jobs through machine-readable
definition files, rather than interactive tools.

Keep in mind that even the most rigorous development practices
occasionally fail. Jobs-as-Code adds visibility to applications so
that, when necessary, operations and support teams can more
quickly identify, analyze, and resolve problems to make the appli-
cation available again.

CHAPTER 3 Application Workflow Orchestration in a CI/CD Pipeline 19

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Looking at the CI/CD pipeline

 » Going beyond automation with
application workflow orchestration

Application Workflow
Orchestration in a
CI/CD Pipeline

Continuous integration (CI) and continuous delivery (CD) are
processes within the software development life cycle (SDLC)
designed to enable rapid and robust software development.

Both processes follow the same direction within the SDLC pipeline
but end at different intervals. In this chapter, you learn about the
CI/CD pipeline and application workflow orchestration.

Examining the CI/CD Pipeline
Continuous integration involves merging all coding works of a
software development project on an ongoing basis. For exam-
ple, committing all code changes to a centralized repository can
be considered as a simplified version of CI. The concept is further
enhanced using automation tools and processes in a DevOps cul-
ture that drives rapid integration of iterative code developments.

20 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The build is therefore available at a single, accessible machine
location for further testing.

The cultural component is an integral part of a CI strategy —
collaborating, communicating, and learning how to perform and
merge small code changes faster requires a cultural shift at the
individual and collective levels within the organization. CI strat-
egies encourage small and frequent code commits that can be
integrated faster without breaking the resulting software func-
tionality. The build servers run automated tests on the merged
code to identify bugs early in the SDLC pipeline, as well as vali-
dating and delivering new application changes to end-users.

Continuous delivery extends CI to incorporate automated software
releases within the SDLC pipeline. The builds with continuously
integrated code changes are automatically released to production
after initial testing (such as automated unit tests). At the produc-
tion stage, the software build is available for in-depth testing and
therefore ready for production, although a release may require
further manual approval for business or technical reasons. If the
release process is also automated, the process is called continuous
deployment (rather than continuous delivery).

Several common components exist across the CI/CD pipeline,
including:

 » Source control: Developers check out code from a source
control system, make changes, and check the code back into
the source control system. In this way, developers can
collaborate on code and track changes to it.

 » Build tools: Build tools automatically kick off processes after
code changes are committed to a particular branch, such as
“testing” or “integration.” The tools and commands to merge
and compile the code vary across programming languages.
Some languages do not require a compile step.

 » Testing tools: Automated test tools come in many forms,
from those that accept plain-language test definitions to
more complex back-end testing frameworks. These tests
include internal acceptance testing, which may also have
non-functional requirements, such as performance testing.

CHAPTER 3 Application Workflow Orchestration in a CI/CD Pipeline 21

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Deployment system: Deployment tools come in many
forms. And, just as some programming languages may not
require a compile step, deployment tools are dependent on
the type of application being deployed.

The CI/CD pipeline doesn’t typically begin with an end-to-end,
fully integrated process. Instead, organizations move incre-
mentally toward the goal of CI/CD. The following best practices
will help you implement an effective CI/CD strategy for your
organization:

 » Operate the infrastructure as code. An effective CI/CD
pipeline requires the infrastructure to be adaptable and
consistent with the production environment while preserv-
ing the integrity of configurations, as resources are provi-
sioned dynamically and automatically. Any configuration
drift affects the repeatability of the testing and deployment
process and therefore prevents true continuity within the
SDLC pipeline.

 » Maximize version control. To ensure that every change to
the software build is meaningful and successful, a version
control system (VCS) can be used to track the changes and
revert to earlier deployments as necessary. An automated
CI process can be achieved by triggering software integration
and testing processes as the VCS is updated with a new code
commit. The changes can be documented accordingly to
maintain a single version of truth as the build progresses
through the development phase. Additionally, it is beneficial
to limit the branching in the VCS to reduce the possibility of
a branch not being tracked for code updates and testing.

 » Maintain a consistent deployment process. A cultural,
as well as tooling, change may be necessary to ensure that
developers adhere to a standardized process for code
commits. The build process should also be consistent
throughout the pipeline. For example, build unique binary
artifacts and reuse the result throughout the SDLC pipeline.
By avoiding packaging software multiple times in different
versions simultaneously between disparate teams, you can
ensure inconsistency will not be injected into the final
software product delivered to end-users.

22 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

WHAT IS CONTINUOUS TESTING?
Cutting corners isn’t an option for enterprises that value the quality of
their services and the customer’s experience. Slowing down isn’t,
either. It defeats the purpose of DevOps. The only way to achieve CI/
CD while putting out healthy and stable services is through continu-
ous testing.

Continuous testing takes advantage of automated tests as a core
piece of the software delivery pipeline to get feedback throughout the
SDLC. Continuous testing is an automated end-to-end testing solution
that integrates into your existing development processes. Modern
application development and delivery pipelines have resulted in
deployment cycles with less time between deliveries as well as more
complex software releases. Continuous testing is implemented into
the development process so that quality assurance (QA) happens
every step of the way to ensure risk is constantly measured and
mitigated.

The primary goal of continuous testing is assessing business risk cov-
erage by providing instant insight into the overall health of each
release candidate. Embedding testing into the software development
process from beginning to end ensures that issues are found sooner
and are more readily manageable. Continuous testing is seamlessly
integrated into the software delivery pipeline and DevOps toolchain.
The pursuit of continuous testing is to eradicate bottlenecks com-
pletely by performing the right tests at the right stages of each devel-
opment cycle.

Continuous testing delivers actionable feedback for each step of the
development process. Realistically assessing the end-user’s experi-
ence provides invaluable feedback that helps DevOps teams ensure
that the user experience is protected without slowing down the
SDLC. Achieving all of this requires the implementation of automated
tests that work together with DevOps development tools to integrate
directly into each stage of the process.

Continuous testing is a cultural shift from testing at the end, to testing
early, often, and at all stages of development, with the utilization of
automation wherever possible. The approach to testing should be
systematic and, as with all processes in DevOps, should be in a con-
stant state of improvement. The beauty of speeding up the SDLC is
that it gives DevOps teams more experience dealing with each stage

CHAPTER 3 Application Workflow Orchestration in a CI/CD Pipeline 23

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

of the process, which enables them to have deeper insight into ways
the process might be improved. The goal of DevOps teams and con-
tinuous testing is to improve constantly while looking for ways to opti-
mize each step of the process.

The primary goal of continuous testing is assessing business risk
 coverage. In practice, this means that the information you glean from
your automated tests must be actionable data that is meaningful
enough to inform deployment decisions. Risk assessment requires
low-level details as well as high-level information that can be used
as data for supporting deployment decisions. If your tests aren’t
affecting the business decisions you make, then your tests aren’t
 telling you enough.

Continuous testing should focus on the user’s experience and whether
or not changes have affected not only performance, but also func-
tionality. Protecting the end-user experience is paramount when it
comes to DevOps deployment schedules because changes should be
released rapidly. Quick deployments can result in quickly breaking
your services if you don’t implement continuous testing throughout
the process from start to finish. Tests should be broad enough to
detect the impact of changes made on the user’s experience and the
functionality of the application.

Risk assessment performed by continuous testing practices should
cover risk mitigation tasks, technical debt, quality assessment, and
test coverage optimization. This ensures builds are ready for the next
step of the process before they move on. Continuous testing should
also test for policy compliance. The information provided by continu-
ous testing should be actionable and relevant to the software’s cur-
rent stage in the SDLC. This allows fixes to be performed right away
without allowing issues to corrupt steps later in the process and
require additional backtracking to address.

Various tools that are available for DevOps practitioners can be inval-
uable additions to your technology stack. This is true for continuous
testing systems as well. Tools like GitHub and Selenium are open-
source options that help with testing the functionality of code every
step of the way. DevOps teams can utilize the same automated tests
regardless of where the changes are within the development life
cycle. Continuous testing provides unparalleled access to actionable
data that helps prevent the customer experience from degrading
while also providing detailed information for business decisions.

24 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Test early and often. Perform small and faster testing
procedures early during the SDLC pipeline to identify prob-
lematic changes before it’s too late. This means that the SDLC
teams must prioritize testing, usually starting with unit tests,
followed by integration tests, system tests, and acceptance
tests. Developers may run some tests locally before applying
code changes and therefore detect issues before the code is
integrated within the centralized repository. Run the tests in
containers to standardize the test environment and enhance
portability of the testing infrastructure.

 » Security. Ensure optimum security of the CI/CD infrastruc-
ture, especially because the pipeline contains valuable data
and access to deploy code changes to a centralized reposi-
tory. Using advanced identity and access management
capabilities, virtual private networks (VPNs) for access, and
multiple layers of security may be necessary, depending
upon the risk exposure.

Adding Jobs-as-Code
Event-driven workflows including batch and micro-batch
jobs can have elements from numerous external systems. The
Jobs-as-Code approach allows jobs to be processed through a
CI/CD pipeline.

As the CI/CD pipeline in an organization matures, tasks naturally
move toward development and become part of a developer’s task
list or backlog. However, because batch jobs have so many differ-
ent parts from numerous systems, creating jobs as code requires a
mature DevOps organization. In such an organization, developers
and operations work together to create the batch job.

Developers may create the code for the batch job using their
knowledge of the business requirements and the application being
developed. Operations supplies the environment, possibly includ-
ing data elements, credentials, and other system-level items.

Jobs-as-Code (discussed in Chapter 2) enables job scheduling to
be standardized and automated by embedding code using a sim-
ple notation that makes application programming interface (API)
calls to a scheduling engine, then manages these calls throughout
the CI/CD pipeline.

CHAPTER 3 Application Workflow Orchestration in a CI/CD Pipeline 25

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Scaling Up Application Workflow
Orchestration

With application workflow orchestration in place, facilitating the
repeatability of processes within the orchestration becomes the
next challenge. As more tasks are added to the workflow, coordi-
nation becomes a challenge.

Workflow orchestrations become cumbersome when more time
is spent managing the orchestration than developing the appli-
cation. Therefore, a tool that can scale to meet the needs of many
complex tasks is vital to success.

Some characteristics to look for in an application workflow
orchestration solution include:

 » Flexible control: The tool should enable multiple members
of the DevOps team to work with the tool.

 » Customization: It should enable customizations to fit the
organization rather than the organization changing its
processes to fit the solution.

 » Visibility: Task and process status, including both success
and failure, should always be visible.

 » Scalability: The application workflow orchestration solution
should be able to scale up to support complex and simulta-
neous workflows.

Finding application workflow orchestration solutions that sup-
port the complexity needed by a mature DevOps organization
is difficult. Evaluating products means putting them into real-
world situations through proof-of-concept and parallel process-
ing, all of which is time consuming. Ideally, a solution should
have a proven track record so that setup is well documented and
supported.

CHAPTER 4 Application Workflow Orchestration in a Containerized World 27

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Exploring the container pipeline

 » Building standard container pipeline
processes

 » Bringing application workflow
orchestration into the Jobs-as-Code
pipeline

Application Workflow
Orchestration in a
Containerized World

Containers have revolutionized the virtualization market by
segmenting processes, drastically increasing portability,
and saving space and time. These lightweight, safe spaces

coincide beautifully with the DevOps methodology by bringing
cohesion and clarity to all stages of the build, test, and deploy
model of computer coding. In this chapter, you learn how to bring
application workflow orchestration to the container pipeline.

Looking at the Container Pipeline
A pipeline is a workflow strategy that uses automation to produce
software in an effective and timely process. First, automated tests
are generated with every code change or check-in. Next, a code
analysis runs. If the code makes it through the quality control
gates and testing, then automatic deployment is initiated. Finally,
acceptance tests run against the code. When applied optimally,
new automation begins at every stage of code check-in. Only one

28 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

build is tested at a time. If a segment goes red or status updates
occur, developers are notified from source control to end-user.
This process prevents compound errors that can occur through
integration and testing of the application’s smallest components.

Pipeline or “pipelining” breaks continuous integration and con-
tinuous delivery (CI/CD) down into the individual stages of the
build. This allows developers to incrementally test, assess, and
redeploy computer code without impeding workflow throughout
the project.

Developing Container Pipelines
Standard processes for developing container pipelines allow you
to implement a pipeline that’s effective and useful. The details
of your processes will depend upon the size of your team, your
coding language, the platforms used, and the individual projects
themselves. However, by establishing standard processes, you can
keep your pipeline clear, managed, and stable. A typical four-
stage process includes the following stages:

 » Commit and build: Newer versions of the code are submit-
ted into the CI/CD system. The code is containerized and
tested. When the code has passed all tests, it moves to the
next stage.

 » Automated acceptance: Tests for basic functionality are
executed. These tests should be done in an environment
similar to the production environment. Issues found should
be addressed before moving on.

 » Continuous deployment: Additional tests, such as func-
tional, regression, and stress, occur.

 » Production release: Fully tested code is released into
production.

The timeframe of the development stage often depends on the
business and its goals. By establishing standard processes, robust
software can be distributed to the end-user more efficiently.

CHAPTER 4 Application Workflow Orchestration in a Containerized World 29

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Adding Application Workflow
Orchestration

Workflows should be treated the same as all other code compo-
nents of an application, meaning they should be written early on,
together with all other coding tasks. This is a fundamental com-
ponent of a Jobs-as-Code approach.

When applications are containerized, the application workflow
orchestration handles some additional technical considerations.
For example, an application might consist of three images called
A, B, and C. When running an instance of the application, the
workflow requires that container A1 is instantiated from Image
A. When that instantiation completes successfully, containers B1
and C1 should be launched, based on images B and C, respectively.
In addition to conventional sequencing and dependency informa-
tion, workflow definitions must be able to express that the pre-
ceding steps are performed by launching a container using Docker
or some other container runtime. The workflow engine must be
able to start and track the progress of containers, and the logs and
output generated by the processes running inside a container —
whose lifetime is likely very short — must be extracted and saved.
Application workflow orchestration provides all these capabilities.

With these capabilities, a layer of abstraction for application
workflows is provided such that the underlying technology plat-
form is not a factor to be considered. If the application compo-
nent, or microservice, that runs as container C1 must move to a
different platform for some reason, this can easily be accom-
plished without changing the workflow logic. With this approach,
application workflows can be managed in any pipeline using the
best technology fit for the purpose.

In Figure 4-1, Jobs-as-Code is applied early in the development
stage, just as it would be in a non-containerized environment.
The application workflow orchestration solution monitors work-
flow execution and is included as part of the infrastructure in
which the application is tested and operated.

30 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Application workflow orchestration must be included as a com-
ponent of the infrastructure in which applications are tested and
operated. In automated and virtualized or containerized environ-
ments, the infrastructure is usually built by tools that implement
Infrastructure-as-Code. An important part of Jobs-as-Code is to
provide services that can be invoked programmatically to build
application workflow infrastructure. This means that the steps
required to build and configure the components to execute and
monitor application workflows can be performed automatically
with no human intervention.

FIGURE 4-1: Adding Jobs-as-Code in a container architecture.

CHAPTER 5 Looking at Real-World Examples 31

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Developing a payment processing
application

 » Applying DevOps and big data to fight
malware

 » Pairing DevOps and cloud for a leading
travel technology company

Looking at Real-World
Examples

This chapter provides real-world examples of organizations
using application workflow orchestration with Jobs-as-
Code in their DevOps processes and continuous integration/

continuous delivery (CI/CD) pipelines.

Developing a Payment Processing
Application

A hugely successful payments processor with active users all over
the world has more than 4,500 developers working to maintain
and enhance software used by millions of customers every day.

From support tickets to CI/CD
In just a few years, the payments processor has gone from requir-
ing developers to open support tickets for everything to a pro-
cess where developers are in control. They previously had to open
tickets for tasks such as test environment creation, application
testing, release planning, capacity planning, and other common
tasks. Completion of these processes took anywhere from days to
months.

32 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The company began implementing DevOps practices using a
 custom tool that enabled developers to gain more control over the
software development life cycle (SDLC). The company also inte-
grated Control-M, an application workflow orchestration product
from BMC, into the DevOps process.

Application delivery is now faster, and developers can man-
age tasks themselves. As the self-service paradigm matured, the
company started seeing the benefits of DevOps and CI/CD.

Adding Jobs-as-Code
This company is all about helping its customers pay for online
purchases. There are no jobs in that process, and usually it’s a
web or mobile application you interact with. But at its core, the
company is a payment processor that requires moving money
around. That movement happens in the background and is largely
managed by Control-M jobs.

Taking a Jobs-as-Code approach has enabled the company’s
developers to build orchestration for business-critical money
management applications at the same time they write new or
updated business logic. By accessing the capabilities of Control-M
via its Automation Application Programming Interface (API)
from the Developers’ Self-Service Portal, developers can work
with workflow orchestration, further enhancing the self-service
nature of the company’s DevOps processes. For example, devel-
opers can create a complex workflow, perform a dry run to ensure
that it is working as planned, and then push the entire application
to production.

Being able to leverage Control-M hasn’t increased the learning
curve for developers, as can sometimes happen when new tools or
processes are added to a DevOps process. Because Control-M uses
de-facto industry standards of JavaScript Object Notation (JSON)
for its configuration and Representational State Transfer (REST)
APIs, it was simple to embed its functionality into the technology
stack used by developers. Doing so enables the entire application,
including operational workflows, to receive the additional testing
benefits that come from the Jobs-as-Code paradigm.

DevOps practices have shown that moving additional develop-
ment tasks nearer to the developers really works. When develop-
ers learn the benefits associated with an enhanced self-service
workflow, productivity increases.

CHAPTER 5 Looking at Real-World Examples 33

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Leveraging Big Data and DevOps
to Fight Malware

A popular cybersecurity firm that provides protection for numer-
ous operating systems from malware and other threats processes
a serious amount of data.

Big data processing
The data processed by this cybersecurity firm meets the criteria
traditionally associated with big data:

 » Volume: The sheer amount of data collected about potential
cybersecurity threats

 » Variety: Numerous sources, each reporting in different ways
and with different levels of information density

 » Velocity: The high speed with which data is generated and
consumed

Data received is typically low quality, requiring a large amount of
processing to gain value from it. The data is received quickly. It
requires a system with little downtime and with continual move-
ment into more structured forms for downstream analysis.

Adding application workflow
orchestration
Orchestration is necessary because of the complexity of the pro-
cessing involved. Incoming data is placed into a large data lake,
and application workflow orchestration begins through a series of
managed workflows. The first step involves extract, transform,
load (ETL) processing to clean and aggregate the data. Control-M
works with various back-end elements such as Redis Enterprise
and several Amazon Web Services (AWS) cloud services.

At a very high level, ETL refers to processes that move data from
one system to another system while potentially altering the data
to fit into the new system.

Once the data has gone through the ETL processes, the company
sends the data into multiple streams for further processing. The
data moves through several platforms such as those for machine

34 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

learning and predictions and eventually into data marts for con-
sumption by end-user tools such as Tableau.

Control-M orchestrates the complex tasks involved in data pro-
cessing and monitors the orchestration status. Monitoring is
important because it enables the company to meet its service-
level agreements (SLAs).

Advanced integrations
Control-M integrates well with back-end data stores and cloud
services. It makes it easy to integrate with popular services and
products via a powerful REST API.

Developers are not required to learn new programming languages
to get immediate value from Control-M. The code to create jobs is
written in standard JSON.

A Leading Travel Technology Company
Leverages DevOps and the Cloud

A leading travel technology company processes the vast majority
of travel-related transactions for hundreds of airlines and hun-
dreds of thousands of hotels worldwide. They are also responsible
for operations at airports, cruise lines, railroads, and ferries. If
you’ve booked a flight online, chances are good that this company
was behind it.

The company processes an incredible amount of data, with nearly
4 million bookings per day and more than 50,000 transactions
per second during peak times. This is done with more than 220
million lines of code written and maintained by thousands of
developers.

The company utilizes Control-M to provide critical services in
support of the vital and time-sensitive technology solutions nec-
essary for travel-related operations.

Batch jobs at scale
In addition, the company manages more than 300,000 jobs every
day with Control-M. Many of the jobs are mission-critical to
smooth and timely travel operations around the globe. A delay in

CHAPTER 5 Looking at Real-World Examples 35

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

processing a batch job can mean a real impact on flight schedules
and other travel plans.

A significant part of the work is done through file transfers. These
transfers are received from multiple airlines with numerous
flights and other data elements that must be processed quickly
and accurately.

An example workflow involves receiving updated pricing infor-
mation from airlines. This information must be updated within a
related database while meeting the requirements of the SLA. The
impact of not meeting the SLA is huge because tickets may be sold
with the wrong pricing information.

These SLAs are sometimes difficult to meet with batch jobs.
 Control-M manages the jobs and provides robust monitoring for
the workflow. If a problem occurs, a team member can address it
immediately.

DevOps and cloud
In the past, the company used an in-house tool that enabled
developers to create jobs. Those jobs were then handed off to
another team for scheduling. The tool evolved but was eventually
orphaned in favor of Control-M. This migration enabled develop-
ers to create the job as well as manage its end-to-end deployment.

The company has moved its thousands of development and oper-
ations staff to a DevOps model with Control-M as an important
piece of the DevOps processes. The company leverages its internal
cloud running Docker, Kubernetes, Openshift, and Control-M to
speed development.

With the internal cloud deployment, the company includes
 Control-M as part of the Docker container image, thus saving
deployment and management time. Control-M can manage both
the container-based jobs and those jobs still using external cloud
and virtual machine-based operating environments.

With DevOps processes, an internal cloud, and Control-M, the
company eliminates manual processing for requests such as job
scheduling. The result is that developers can use the Jobs-as-
Code approach within the CI/CD pipeline.

The company provides 99.99 percent availability on average, with
more than 5,000 IT-related changes and more than 500 software
deployments per month.

CHAPTER 6 Ten Benefits of Application Workflow Orchestration 37

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

 » Looking at the benefits of application
workflow orchestration

 » Considering the advantages of
Jobs-as-Code

Ten Benefits of
Application Workflow
Orchestration and
Jobs-as-Code

This chapter describes some of the benefits of integrating
application workflow orchestration and Jobs-as-Code into
DevOps and the software development life cycle (SDLC).

Faster Software Delivery at Scale
When an organization applies the same methods and processes
for managing application code and configurations to application
workflows, business services can be developed and deployed more
quickly. Over time, developers become more familiar with the
process of creating and managing jobs and workflows.

In-house, proprietary tools can be replaced with an application
workflow orchestration product. Importantly, processes that
previously would have required manual actions from operations

38 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

or IT staff can be automated within the workflow. For example,
developers can perform complex end-to-end tests of an entire
application, including the execution of application workflows,
without needing to open a ticket or contact the operations team.

Increased Software Quality
Batch jobs can be created and managed by the same developers
who are creating the application code. This increases accuracy in
relation to the business requirements because the developers are
closest to those requirements. Overall software quality increases
when the organization implements application workflow orches-
tration and Jobs-as-Code.

Automated Testing
By automating production scheduling, similar notation and inter-
faces for all jobs can be used at the earliest stages of the SDLC,
allowing for early and accurate testing. This is even more effective
when Infrastructure-as-Code is used to provision a test environ-
ment that is as close to the production environment as possible.
That makes it possible to anticipate and eliminate resource con-
tention and inconsistencies with other workloads.

Repeatable Processes
Automated testing and other elements involved in application
workflow orchestration are repeatable. If something goes wrong
with a test or other part of the managed processes, changes can be
rolled back, the code fixed, and the test executed again.

Jobs frequently require a significant amount of setup and config-
uration prior to testing, so being able to repeat the test easily is
important.

CHAPTER 6 Ten Benefits of Application Workflow Orchestration 39

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Better Communication
Moving Jobs-as-Code earlier in the development life cycle gives
developers and operations teams a chance to discuss what must
happen for the jobs to run correctly. As DevOps practices mature
within an organization, better communication about how jobs
are executed enables both teams to learn more about the behind-
the-scenes processes and requirements for the jobs.

Increased Agility
With job creation occurring earlier in the development process,
requirements can be refined and changed earlier in the process
as well. Without Jobs-as-Code, the prerequisites for a job or even
its requirements might not be discovered until late in the process,
when operations begins creating the job.

Having developers create the job and communicate with opera-
tions staff gives the organization a chance to learn the require-
ments and seek optimizations in the process. For example,
development staff and operations may not have the same view of
how data is processed through an extract, transform, load (ETL)
job. By working on the job earlier in the process, the organization
can optimize previously hidden elements.

Greater Visibility
Application workflow orchestration and DevOps increase visi-
bility. The DevOps processes are typically tied closely with agile
processes, and this approach increases visibility into the entire
SDLC. An application workflow orchestration product makes it
easy to see where in the process a given change resides and, in
the event of failure, where the process failed.

40 Accelerating DevOps Delivery Cycles For Dummies, BMC Special Edition

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CI/CD Integration
Jobs-as-Code in application workflow orchestration integrates
with popular continuous integration/continuous delivery (CI/CD)
tools. At a process level, Jobs-as-Code fits well within existing
practices already taking place in a DevOps organization.

Job definitions can be retrieved from the source code repository
and deployed as part of the CI testing process and eventually as
part of the production environment.

Containerization
Application workflow orchestration supports both non-
containerized solutions and containerized solutions. The agent
for the workflow orchestration product is deployed onto the
 container image at build time and is automatically deployed when
the container is deployed.

Native Languages
Application workflow orchestration uses JavaScript Object
 Notation (JSON), which is lightweight and doesn’t require
 document type definitions (DTDs). It has a consistent syntax that
looks a lot like key/value pairs familiar to operations staff.

These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://bmc.com/controlm

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Chapter 1 Exploring DevOps 101
	What Is DevOps?
	What Is CI/CD?
	What Is Application Workflow Orchestration?

	Chapter 2 Jobs-as-Code in DevOps
	Defining Jobs
	Thinking of Jobs as More than Business Logic
	Optimizing the Job Request Process

	Chapter 3 Application Workflow Orchestration in a CI/CD Pipeline
	Examining the CI/CD Pipeline
	Adding Jobs-as-Code
	Scaling Up Application Workflow Orchestration

	Chapter 4 Application Workflow Orchestration in a Containerized World
	Looking at the Container Pipeline
	Developing Container Pipelines
	Adding Application Workflow Orchestration

	Chapter 5 Looking at Real-World Examples
	Developing a Payment Processing Application
	From support tickets to CI/CD
	Adding Jobs-as-Code

	Leveraging Big Data and DevOps to Fight Malware
	Big data processing
	Adding application workflow orchestration
	Advanced integrations

	A Leading Travel Technology Company Leverages DevOps and the Cloud
	Batch jobs at scale
	DevOps and cloud

	Chapter 6 Ten Benefits of Application Workflow Orchestration and Jobs-as-Code
	Faster Software Delivery at Scale
	Increased Software Quality
	Automated Testing
	Repeatable Processes
	Better Communication
	Increased Agility
	Greater Visibility
	CI/CD Integration
	Containerization
	Native Languages

	EULA

